DYNAMIC ANALYSIS OF SPACE STRUCTURES INCLUDING ELASTIC, MULTIBODY, AND CONTROL BEHAVIOR

Larry Pinson Langley Research Center Hampton, Virginia

> Keto Soosaar Cambridge Research

The Problem

To develop analysis methods, modeling strategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground.

Problem Incorporates:

- Large Reliable Structural Models (including non-linear)
- Multi-Body Flexible Dynamics
- Multi-Tier Controller Interaction
- · Environmental Models Including 1g and Atmosphere
- · Various On-Board Disturbances
- Linkage to Mission-Level Performance Codes

All areas are in serious need of work, but weakest link is multi-body flexible dynamics.

Some Definitions

Structural Dynamics:

Motions of an elastic continuous structure

under time-varying forces.

Dynamics:

Motions of a rigid particle or continuum.

Multi-Body Dynamics:

Motions of an assembly of rigid and/or flexible elements mutually interacting via non-elastic

connections (trees or rings)

Multi-Body Dynamics are Encounted in Spacecraft with:

- 1. Very Flexible Fixed Appendages
- 2. Rotating Appendages
- 3. Dual-Spinners
- 4. Isolators or Gimbals between Significant Parts of S/C
- 5. During Deployments

MULTI-BODY TOOLS WILL PROBABLY BE NEEDED FOR:

NASA SSTM	NAME
A-18	PINHOLE OCCULTER FACILITY (50 M)
A-20	LARGE DEPLOYABLE REFLECTOR (20 M)
C-6	GEOSTATIONARY PLATFORM
U−4	TETHERED SATELLITE
U - 5	SPACE STATION
A-24	INFRARED RADIOMETER (100 M)
A-25	GRAVITY WAVE INTERFEROMETER (1,000 M)
A-26	COSMIC (34 M)
A-27	100 M THINNED APERTURE
A-28	VERY LARGE SPACE TELESCOPE
L-1	SEARCH FOR EXTRA-TERRESTRIAL INTELLIGENCE (300 M)
U-6	GEOSYNCHRONOUS SPACE STATION

Multi-Body Dynamics Code Needs can be Gathered into Following Classes:

- 1. Large Area Antenna
- 2. Space Station
- 3. Generalized Deployment
- 4. Optical Systems
- 5. Miscellaneous General-Purpose Codes

GENERAL-PURPOSE CODE

- . FIRST-ORDER ASSESSMENT OF NEW CONCEPTS
 - . SAILS, TETHERS, MULTI-RINGS, DEPLOYMENTS
- . SMALL TO MEDIUM-SIZE PROBLEMS
- . CONTROL-STRUCTURE INTERACTION
- . LARGE MINI-COMPUTER ENVIRONMENT, MACHINE INDEPENDENT
- . USER-FRIENDLY, FLEXIBLE
- . EVOLUTIONARY VERSION OF CURRENT DISCOS

DEPLOYMENT CODE

- . DRIVEN MAINLY BY LARGE LIGHTWEIGHT ANTENNAS
- . TREES OR RINGS WITH MANY BODIES
- . MASS FLOW DURING DEPLOYMENT
- . GEOMETRIC STRUCTURAL NON-LINEARITIES
- . TIME-VARYING LARGE STRUCTURAL MODEL
- . OPEN OR CLOSED-LOOP CONTROL OF DEPLOYMENT

ASSESSMENT ISSUES

- . DEPLOYMENT INTO UNACCEPTABLE CONFIGURATION
- . DEPLOYMENT INTO NON-RECOVERABLE SPIN MODES
- . ENTANGLEMENTS, BREAKAGE, STRUCTURAL INSTABILITY

LARGE ANTENNA DEPLOYMENT

VERY LARGE ANTENNA CODE

- . OPERATIONAL CONFIGURATION LIMITED MULTI-BODY
- . VERY LOW-FREQUENCY STRUCTURE
- . VERY LARGE STRUCTURAL MODEL (10-50,000 DOF)
- . MEMBRANE OR OTHER GEOMETRIC NONLINEARITIES
- . CONTROLLED SURFACE, FEED ALIGNMENT, SYSTEM POINTING
- . MODAL VS. TRAVELLING-WAVE REPRESENTATION

ASSESSMENT ISSUES

- . MAIN LOBE LOSS OF GAIN
- SIDE-LOBE STRUCTURE
- . DYNAMIC INTERACTION WITH ENVIRONMENTAL DISTURBANCES
- . MAJOR STRUCTURE-CONTROL INTERACTION

TYPICAL LARGE ANTENNA

SPACE STATION CODE

- MULTI-BODY TREES (APPENDAGES & PAYLOAD SENSORS)
- · LARGE STRUCTURAL MODEL
- · SYSTEM AND EXPERIMENT POINTING CONTROL
- · SIGNIFICANT INERTIA CHANGES (CONSTRUCTION, DOCKING)
- EXPERIMENT DISTURBANCES

ASSESSMENT ISSUES

- EXPERIMENT ISOLATION FROM ACCELERATION
- EXPERIMENT POINTING & TRACKING
- OCCUPANT COMFORT
- CONSUMABLES

SPACE STATION

OPTICAL STRUCTURES CODE

- . OVERLAPPING CONTROL SYSTEMS
 - . SURFACE (WAVEFRONT)
 - . VIBRATION
 - . RAPID SLEW
 - . PRECISION POINTING
- . MULTIBODY (TREES)
- . ISOLATORS
- . MANY SOURCES OF DISTURBANCE
- . SLOSH AND POGO
- . RAPIDLY VARYING INERTIAS
- . RAPID CONFIGURATIONAL CHANGES
- . VERY LARGE ELASTIC MODEL

ASSESSMENT ISSUES

- . SYSTEMS-LEVEL PERFORMANCE (LINKAGE TO OPTICS CODE)
- . ROBUSTNESS OF MULTI-TIER CONTROL

Generic Assessment Tool

STATUS OF SPACE-SYSTEMS ORIENTED MULTI-BODY TECHNOLOGY

- . DIVERSITY OF FORMULATIONS
 - . TWO GENERAL FAMILIES
 - . ANALYTICAL MECHANICS "DISPLACEMENT METHOD"
 - . EULER/NEWTON "FORCE METHOD"
 - . SEVERAL SCHOOLS OF THOUGHT WITHIN FAMILIES
- DIVERSITY OF SOFTWARE CODES
 - . SOME EXCELLENT, MANY MARGINAL
 - . SIGNIFICANT LEARNING CURVES, USER HOSTILE
 - . GENERALLY LONG RUNNING TIMES
 - . UNCERTAIN ACCURACY/VALIDITY
 - . MANY USERS UNSOPHISTICATED, TREAT AS BLACK BOX
- GENERALLY AN IMMATURE AREA (UNLIKE STRUCTURAL DYNAMICS)

CONCERN:

- . We are proposing more complicated satellites than our current analytical tools can reliably predict.
- . In the multi-body area there is a vast diversity of opinion on the proper approach to the formulations.
- . The time to develop a unified formulation, and convert it into code, will exceed the time available for immediate needs.

Two Approaches to Resolution

- . Integration of available and other near-term codes (2-4 years).
- . Basic research and development activity leading to NASTRAN-like multi-body code (5-8 years).

OBJECTIVES OF NEW MULTI-USER CODE

- . ENDURING BUT EFFICIENT COMMON FORMULATION
 - . TREES, RINGS, MASSFLOW
 - . LARGE STRUCTURAL MODELS
 - MULTI-LEVEL CONTROL

SOFTWARE FEATURES

- . USER-FRIENDLY PROBLEM-LANGUAGE I-O
- . OBJECT-ORIENTED PROBLEM ASSEMBLY
- . INCORPORATED SYMBOLIC MANIPULATION
- . STRIPPED. EFFICIENT CODE FOR EXECUTION

MACHINE-INDEPENDENCE AND ACCESSIBILITY

- . SUPER-MINIS
- . MAINFRAMES
- . SUPERS
- . FEDERATED PARALLEL PROCESSORS

Basic Approach to Development

- . Consolidate Multi-Agency Government Support
- . Theory Phase $T = T_0$
 - . Technical Participation by Government, Industry, Academia
 - . Study and Consolidation of Alternate Formulations
 - . Preliminary Software Architecture Studies
- . Prototype Phase $T = T_0 + 2$
 - . Reduce to 2 or 3 Major Formulation and Software Approaches
 - . Continue Support to Universities to Train Users
- Coding Phase $T = T_0 + 3$
 - . Choose Best Overall Approach to Code
- Preliminary Testing Phase $T = T_0 + 5$
 - . First Release to Selected Users
- . Public Release $T = T_0 + 6$

Summary

- . The problems are there, funding should be pursued
- . On-going capabilities fall short
- . Near-term needs require the integration of existing codes
- . Far-term needs must follow a return to basics